ミKHNIKO

＇Eva $\lambda \iota \beta a ́ \delta \iota$.

 Kavtóo．
 بís．

KANTOP：A $\sim о v ́ \sigma t \varepsilon ~ \mu \varepsilon, ~ Г \varkappa \lambda \alpha \mu i ́ s . ~$
ГКААМIГ：$\Delta \varepsilon v$ лá $\varepsilon \iota$ 人́ $\lambda \lambda$ ．
KANTOP：$\Delta \varepsilon v \pi \alpha ́ \varepsilon ı \alpha ́ \alpha \lambda \lambda o$.

 Nтаvィáv．A！A！
ГКААМIL：A，va！！О лодข $\alpha \gamma \alpha \pi \eta \mu \varepsilon ́ v o \varsigma . ~ О ~ л \alpha @ \alpha-\alpha \gamma \alpha л \eta \mu \varepsilon ́ v o \varsigma . ~$
KANTOP：O л $\alpha \varrho \alpha-\alpha \gamma \alpha \pi \eta \mu \varepsilon ́ v o \varsigma$.

KANTOP：Kát ω o N Navxáv！
ГК \wedge AMİ：К $\alpha \tau \alpha \pi \alpha \tau \varepsilon i ́ ~ \tau \alpha ~ \chi \tau \eta ́ \mu \alpha \tau \alpha ́ ~ \mu о v ~ o ́ \tau \alpha v ~ \varkappa v v \eta \gamma \alpha ́ . ~$
KANTOP：$\Gamma \iota \alpha \tau \alpha$ égod α тov K＠átovs．
ГКлАМІІ：＇Ол $\omega \varsigma ~ \lambda \varepsilon ́ \varepsilon เ . .$.
KANTOP：To K＠átos，દívaı avtós．
 $\alpha v \gamma \alpha ́$ tovऽ．

KANTOP: $A \mu{ }^{\prime} \varepsilon \gamma \omega$;
ГК \wedge AMI Σ : Av α ג λ ot to $\delta \varepsilon ́ \chi o v \tau \alpha \iota . .$.
KANTOP: E $\gamma \omega$ б́ $\delta \varepsilon v$ то $\delta \varepsilon ́ \chi о \mu \alpha \iota$.

KANTOP: Avtoí лоv то $\delta \varepsilon ́ \chi о v \tau \alpha \iota, ~ \varepsilon i ́ v \alpha \iota ~ \delta ı x ท ́ ~ \tau o v \varsigma ~ v \pi o ́ \theta \varepsilon \sigma \eta . ~$

KANTOP: $\Gamma \iota \alpha$ тоv $\varepsilon \theta$ vixó бт@ α тó.
ГКАAMIइ: Kı $\alpha v \tau о ́ ~ \mu ' ~ \alpha л о \delta v v \alpha \mu \omega ́ v \varepsilon ı . ~$
KANTOP: Mas $\alpha \pi о \delta v v \alpha \mu \omega v \varepsilon \iota$.

KANTOP: A $\lambda \lambda \alpha ́ \alpha i ~ \varepsilon v \alpha v \tau i ́ o v ~ \mu о v . ~$

KANTOP: Потє́, ало́ то́тє лоv ot л@óүоvoí μ оv...

KANTOP: Me ódovs óбovs $\psi \alpha ́ \chi v o v v ~ \chi \alpha ı ~ \psi \alpha \chi o v \lambda \varepsilon v ́ o v v ~ \gamma v ́ \varrho \omega ~ \tau о v . ~$

KANTOP: Мє то $\lambda i ́ \pi о \varsigma ~ \alpha \pi ’ ~ \tau \alpha ~ \varkappa о т о ́ л о v \lambda \alpha ́ ~ \mu \alpha \varsigma . ~$
ГК \wedge AMI $\Sigma: ~ А л ’ ~ \tau \alpha, ~ \pi \varrho o ́ \beta \alpha \tau \alpha ́ ~ \mu \alpha s . ~$
KANTOP: A τ ' $\tau \alpha$ үov@ov́vi $\alpha \mu \alpha$.
ГКААМIइ: To γ ov@oúvı!
KANTOP: M ε то $\psi \omega \mu i ́ \mu \alpha \varsigma$.
ГКААМIइ: $\Delta \varepsilon ́ \kappa \alpha ~ \chi ı \lambda ı \alpha ́ \delta \varepsilon \varsigma ~ \chi о т о ́ л о v \lambda \alpha, ~ \delta \varepsilon ́ \gamma \alpha ~ \chi เ \lambda ı \alpha ́ \delta \varepsilon \varsigma ~ \alpha ́ \lambda о \gamma \alpha, ~ \delta \varepsilon ́ \sim \alpha ~$

Т α vло́ ${ }^{\prime}$ олл $\alpha \alpha \pi i \zeta$ оиv.

KANTOP: Tı 兀ov $\chi \varrho \omega \sigma \tau \alpha ́ \mu \varepsilon$; Avтós $\mu \alpha \varsigma ~ \chi \varrho \omega \sigma \tau \alpha ́$.
ГК \wedge AMIइ: K $\alpha \iota$ x $\alpha \iota ~ \pi \alpha \varrho \alpha л \alpha ́ v \omega . ~$

ГК^AMIइ: K $\alpha \tau \omega$ o N $\tau \alpha v \chi \alpha ́ v!~$
KANTOP: K $\alpha \tau \omega$ o N $\tau \alpha v \alpha \alpha ́ v!$

KANTOP: Tov $\theta \varepsilon \omega \varrho \varrho ́ \pi о \lambda v ́ ~ \pi \iota о ~ \chi \alpha ́ \tau \omega . ~$
ГКААМIइ: Пเо жо́т $\omega, \mu \alpha ́ \lambda \iota \sigma \tau \alpha, ~ \chi \iota ~ \alpha л о ́ ~ \pi เ о ~ \chi \alpha ́ \tau \omega . ~$
KANTOP: Подv́ лเо жа́ $\tau \omega$.

KANTOP: $\Lambda v \sigma \sigma \alpha ́ \omega ~ \alpha л ’ ~ \tau о ~ Ө v \mu о ́ ~ \mu о v . ~$
ГК \wedge AMI $\Sigma: ~ Н ~ \tau \iota \mu \eta ́ ~ \mu o v!~$
KANTOP: H ठóg $\alpha \mu \mathrm{ov}$!

ГКААМІІ: Т α л@оүоvıxо́ $\mu \alpha \varsigma ~ \delta ı x \alpha เ \omega ́ \mu \alpha \tau \alpha \ldots$
KANTOP: H $\pi \varepsilon \varrho เ$ vóí $\alpha \mu$ оv...
ГКААМIг: Н ж $\lambda \eta \varrho о v о \mu \iota \alpha ́ \mu \alpha$!
KANTOP: To $\delta \iota x \alpha i ́ \omega \mu \alpha ́ \mu \alpha \varsigma ~ \gamma \iota \alpha$ عvtvхí α.

KANTOP: 'Eтбı $\delta \varepsilon v$ عíval;

KANTOP: Kı ó $\mu \omega \varsigma$.
ГКААМIг: Еí $\mu \alpha \sigma \tau \varepsilon \chi \alpha ́ \tau \iota$.
KANTOP: 'O $\chi \iota$ о́ $\mu \omega \varsigma ~ \alpha v \tau \iota x \varepsilon$ í $\mu \varepsilon \alpha \alpha$.
 @í $\omega \varsigma$ тov Nтаvxáv. A! A! Tov ло入vaүалпиц́vov Kv@íov $\mu \alpha$!
KANTOP: Ov́тє $\tau \alpha$ жо@óเ $\delta \alpha$, ои́тє $\tau \alpha$ Өч́ $\mu \alpha \tau \alpha$.
ГКААМIг: Ои́тє т α Өи́ $\mu \alpha \tau \alpha$, ои́тє т α жо@о́ı $\delta \alpha$.
KANTOP: A $\sim o ́ \mu \alpha$ x α б $\tau \alpha$ óveı@ $\alpha, \mu \alpha$.
 тๆs.
KANTOP: П@є́лєı v α тоv $\delta \iota \omega ́ \xi о \cup \mu \varepsilon$.

KANTOP: Ало́ лаvтоv́!
ГК \wedge AMI Σ : Ave $\xi \alpha \varrho \tau \eta \sigma i \alpha$!

ГКААМIइ: E $\lambda \varepsilon v \theta \varepsilon \varrho i ́ \alpha!$

KANTOP: $\Theta \alpha$ ла́@оч $\mu \varepsilon \alpha \pi$ ' $\frac{\alpha v}{\delta \iota x o ́ ~ \tau о v . ~}$

KANTOP: Mıớ-Mıó́.
ГКААМIइ: Mıбо́-Mıб́́.
KANTOP: Δ เoıหєı́ $\alpha \sigma \chi \eta \mu \alpha$.

ГК \wedge AMIइ: Є $\alpha \beta \alpha \sigma i \lambda \varepsilon v ́ \sigma o v \mu \varepsilon ~ \sigma \tau \eta ~ \theta \varepsilon ́ \sigma \eta ~ \tau о v . ~$

МПАNKO: X α ¢́ $\varepsilon, ~ Г \chi \lambda \alpha \mu i \varsigma . ~ X \alpha i ́ \varrho \varepsilon, ~ K \alpha v \tau o ́ \varrho . ~$

KANTOP, $\sigma \tau о v$ Млаvжó: Паí@v $\alpha \mu \varepsilon \lambda i ́ \gamma o ~ \alpha \varepsilon ́ \varrho \alpha$.

KANTOP, $\sigma \tau o v ~ М \pi \alpha v \varkappa o ́: ~ K \alpha \theta i ́ \sigma \tau \varepsilon ~ \gamma ı \alpha ~ \lambda i ́ \gamma о, ~ \alpha \gamma \alpha \pi \eta \tau \varepsilon ́ ~ \mu о v . ~$

ГКААМIइ: П@á $\mu \mu \tau \iota$, عívaı vүıєıvó.
KANTOP: $\Theta \alpha v \mu \alpha ́ \zeta о v \mu \varepsilon \tau \eta \gamma \varepsilon v v \alpha เ o ́ \tau \eta \tau \alpha ́ \sigma \alpha \varsigma$.
MПANKO: To $\sigma \pi \alpha \theta i ́ ~ \mu о v ~ \beta \varrho i ́ \sigma x \varepsilon \tau \alpha \iota ~ \sigma \tau \eta v ~ v \pi \eta \varrho \varepsilon \sigma i ́ \alpha ~ \tau o v ~ K v \varrho i ́ o v ~ \mu о v . ~$
ГКААМIг, $\sigma \tau \sigma v$ Мл $\alpha v \varkappa o ́: ~ K \alpha \lambda \alpha ́ ~ \chi \alpha ́ v \varepsilon \tau \varepsilon . ~$
KANTOP: $\Sigma v \mu \varphi \omega$ vov́ $\mu \varepsilon \alpha \pi o ́ \lambda v \tau \alpha \mu \alpha \zeta$ ఢ́ $\sigma \alpha \varsigma$.
MПANKO: Kv́@ıoı, $\sigma \alpha \varsigma ~ \chi \alpha \iota \varrho \varepsilon \tau \omega ́ . ~$
Bүаívєı ал' a@ıбтє@á.
KANTOP: X α @́ $\varepsilon, ~ М \pi \alpha v x o ́ . ~$
ГКААМІІ: Хаí@є, Млаvxó. (इтоv Kаvтó@:) $\Delta \varepsilon v \mu \pi о \varrho о и ́ \mu \varepsilon ~ v \alpha ~ v л о-~$ $\lambda о \gamma і \zeta о ч \mu \varepsilon \sigma^{\prime} \alpha v \tau о ́ v$.
KANTOP, $\mu \iota \sigma o \beta \gamma \alpha ́ \zeta о v \tau \alpha \varsigma ~ \tau o ~ \sigma \pi \alpha \theta i ́ ~ \tau o v: ~ ' E \chi \varepsilon \iota ~ \gamma \cup \varrho \iota \sigma \mu \varepsilon ́ v \eta ~ \tau \eta \nu ~ \pi \lambda \alpha ́ \tau \eta$ тоv, $\theta \alpha \mu \pi о \varrho о v ́ \sigma \alpha \mu \varepsilon$ v α тоv $\sigma \varkappa о \tau \omega ́ \sigma о v \mu \varepsilon$.

Кávєı $\mu \varepsilon \varrho \iota x \alpha ́ ~ \beta \eta ́ \mu \alpha \tau \alpha ~ \sigma \tau \iota \varsigma ~ \mu v ́ \tau \varepsilon \varsigma ~ \tau \omega v ~ \pi o \delta \iota \omega ́ v ~ \tau o v ~ \pi \varrho о \varsigma ~ \tau о v ~$ Млаขжо́.

O Каvто́ৎ $\xi \alpha v \alpha \beta \alpha ́ \zeta \varepsilon \iota ~ \tau о ~ \sigma \pi \alpha \theta i ́ ~ \sigma \tau \eta ~ \theta \varepsilon ́ \sigma \eta ~ \tau о v . ~ М л а i ́ v \varepsilon \iota ~ o ~ М а х-~$ $\mu \pi \varepsilon ́ \tau \tau$ ало́ $\delta \varepsilon \xi \iota \alpha ́, ~ а \varkappa \varrho \iota \beta \omega ́ s ~ \tau \eta ~ \sigma \tau \iota \gamma \mu \eta ́ ~ \pi о v ~ \beta \gamma \alpha i v \varepsilon \iota ~ о ~ М л а \nu x o ́ ~$ $\alpha \pi$ ' $\varrho \varrho \iota \tau \tau \varepsilon \varrho \alpha ́$.
KANTOP, $\sigma \tau о v ~ \Gamma \varkappa \lambda \alpha \mu i \varsigma: ~ N \alpha ~ \varkappa \iota ~ о ~ \alpha ́ \lambda \lambda о \varsigma ~ \varepsilon ́ \mu л ı \sigma \tau о \varsigma ~ \tau о v ~ \alpha \varrho \chi เ \delta о v ́ \varkappa \alpha . ~$
ГКААМIг: X $\alpha i ́ \varrho \varepsilon, ~ М \alpha ж \mu л \varepsilon ́ \tau \tau . ~$

MAKMПETT: X α @ $\varepsilon, \alpha \gamma \alpha \theta \varepsilon ́$ K $\alpha v \tau о ́ \varrho . ~ X \alpha i ́ \varrho \varepsilon, ~ \beta \alpha \varrho o ́ v \varepsilon ~ \tau о v ~ Г \varkappa \lambda \alpha \mu i ́ \varsigma . ~$
ГКААМIг: X α @є, М $\alpha \mu \tau \varepsilon ́ \tau \tau, \mu \varepsilon \gamma \alpha ́ \lambda \varepsilon ~ \sigma \tau \varrho \alpha \tau \eta \gamma \varepsilon ́ . ~(\Sigma \tau o v ~ K а \nu \tau o ́ \varrho:) ~ П \varrho o ́-~$

KANTOP, $\sigma \tau о v ~ М \alpha \varkappa \mu л \varepsilon ́ \tau \tau: ~ О ~ Г \varkappa \lambda \alpha \mu i ́ \varsigma ~ \varkappa ı ~ \varepsilon \gamma \omega ́ ~ \theta \alpha v \mu \alpha ́ \zeta о v \mu \varepsilon ~ \tau \eta v ~ л і ́ \sigma \tau \eta ~$ бац, тŋท афобí $\omega \sigma \eta ́ ~ \sigma \alpha \varsigma ~ \sigma \tau о v ~ л о \lambda v \alpha \gamma \alpha \pi \eta \mu \varepsilon ́ v o ~ K v ́ \varrho เ o ́ ~ \mu \alpha \varsigma, ~ \tau о v ~ \alpha \varrho \chi เ-~$ סои́z α Nтаvช α v.
МАКМПЕТТ: Гı $\alpha i ́ v \alpha \mu \eta v$ тоv عí $\mu \alpha \iota$ лıотós $\chi \iota ~ \alpha \varphi о \sigma \iota \omega \mu \varepsilon ́ v o s ; ~ М \eta ́-~$

KANTOP: $\Delta \varepsilon v$ vл $\alpha \varrho \chi \varepsilon \iota ~ \alpha \mu \varphi ı ß о \lambda i ́ \alpha ~ о ́ \tau ı ~ \eta ~ \varepsilon v \gamma v \omega \mu о \sigma v ́ v \eta ~ \tau о v ~ \sigma \alpha \varsigma ~ เ ж \alpha-~$ vолотві́.

MAKMПETT, $\gamma \varepsilon \lambda \omega \dot{\tau} \tau \alpha \varsigma ~ \pi \lambda \alpha \tau \varepsilon เ \alpha ́: ~ H ~ \chi \alpha \lambda$ ơv́v η tov Kv@íov $\mu \alpha \varsigma$, tov

KANTOP: Eípađte đí
 то ठível.
 qutó.
MAKMПETT: Eívaı xal үعvvaíos.

ГКАAMIL: Eíval $\gamma v \omega \sigma t o ́ ~ \sigma \tau о v \varsigma ~ \pi \alpha ́ v \tau \varepsilon \varsigma . ~$
MAKMПETT: Kaı $\delta \varepsilon v$ عívaı $\mu v ́ \theta$ os. O Kú@ıós $\mu \alpha \varsigma$ عívaı x $\alpha \lambda$ ós $\gamma \iota$

 $\mu \varepsilon \gamma \varepsilon v v \alpha \iota o \delta \omega \varrho i ́ \alpha \tau \eta ~ \gamma \varepsilon v v \alpha เ o \delta \omega$ @í α тоv;

Bүаїєı ал' а@ıбтє@á.

KANTOP: Eíval ε ह́vas лlơós. 'Evas $\alpha \varphi \varepsilon \lambda \eta ́ s$.
ГКАAMIL: 'Evas $\alpha \delta$ ı́́ $\varphi \theta$ o@os.
KANTOP: Eлıxívסuvo عíסos. Avtós xı o Mлаvxó عívaı oı $\propto \varrho \chi \iota \sigma \tau \varrho \alpha ́-~$ $\tau \eta \gamma \circ \iota \tau \omega v$ бт@ $\alpha \tau \varepsilon \nu \mu \alpha ́ \tau \omega v$ тоv סои́z α.

KANTOP: $\mathrm{X} \mu, \ldots \delta \varepsilon v$ то $\pi \iota \sigma \tau \varepsilon v ์ \omega$.

