1 Βασικές έννοιες βιολογίας του καρκινικού κυττάρου
 Εισαγωγή
 Κυτταρικός κύκλος
 Κυτταρική κινητική
 Κυτταρική κινητική και ανάπτυξη χημειοθεραπευτικών φαρμάκων

2 Καρκινογένεση και ιστολογικοί παράμετροι
 ενδοεπιθελιακών (in Situ) – μη διηθητικών όγκων
 Απόπτωση και νεοπλάσματική εξακλητική
 Δείκτες πρόγνωσης
 Μέθοδοι προσδιορισμού των προγνωστικών δεικτών
 Ιστολογικός βαθμός κακοπθείας (Grade)
 Mn διηθητικές (in situ) κακοπθείες

3 Διασπορά του καρκίνου (Μεταστάσεις)
1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΒΙΟΛΟΓΙΑΣ ΤΟΥ ΚΑΡΚΙΝΙΚΟΥ ΚΥΤΤΑΡΟΥ

Εισαγωγή

Τα βασικά χαρακτηριστικά του κάθε κυττάρου είναι ο πολλαπλασιασμός και η ικανότητα για σύνθεση πρωτεινών. Το πρώτο επιτυγχάνεται με τη κυτταρική διαίρεση και το δεύτερο με εντολές του πυρηνικού DNA μέσω του RNA για πρωτεινοσύνθεση στα ριβοσώματα.

Στους μονοκύτταρους οργανισμούς, με την κυτταρική διαίρεση επιτυγχάνεται πολλαπλασιασμός μέσω αύξησης του αριθμού των κυττάρων. Στους πολυκύτταρους οργανισμούς, με την κυτταρική διαίρεση αυξάνεται ο αριθμός των κυττάρων του οργανισμού και αντικαθίστανται τα κύτταρα που καταστρέφονται.

Ενώ τα φυσιολογικά κύτταρα πολλαπλασιάζονται, υποκύνονται στον έλεγχο διαφόρων παραγόντων του οργανισμού, τα κακοήθη κύτταρα εμφανίζουν ανώμαλα και ανεξέλεγκτο πολλαπλασιασμό, ενώ παράλληλα διηθούν και τους γυρίζοντας (τοπικο-περιοχική επέκταση) και δίνουν ομοακριματικές μετατάσεις. Δεν πρέπει, επίσης, να διαφεύγει ότι ενώ τα φυσιολογικά κύτταρα επιτελούν ένα ορισμένο αριθμό κυτταρικών διαίρεσεων και ύστερα αποτίθονται, τα κακοήθη κύτταρα, εφόσον τους εξαφανίζονται κατάλληλες συνθήκες, είναι αδάνατα, δηλαδή μπορούν να πολλαπλασιάζονται υπερβολικά.

Βασική προϋπόθεση για την ανάπτυξη ενός νεολαίαματος είναι η διαταραχή της ισορροπίας ανάμεσα στον κυτταρικό πολλαπλασιασμό και την κυτταρική καταστροφή. Η κυτταρική κινητική βρίσκεται στο επίκεντρο της ιατρικής έρευνας για πολλούς λόγους:

1. Έχει παρατηρηθεί διαφορά στην ευαισθησία του κυττάρου, τόσο στην ακτινοβολία όσο και στη χημιοθεραπεία, ανάλογα με τη φάση του κυτταρικού κύκλου, στην οποία βρίσκεται.
2. Ο ρυθμός ανάπτυξης του άγου (ή ταχύτητα πολλαπλασιασμού του καρκινικού κυττάρου) παρουσιάζει σημαντική αναπαραγωγική μετατροπή με τη βιολογική επιθετικότητα και το μεταστατικό δυναμικό του άγου.
3. Η κινητική των νεολαίαματων κυττάρων έχει σχέση με τη φυσική πορεία του άγου.
4. Έχει παρατηρηθεί ότι στην καρκινογένεση παίζει ρόλο η διαταραχή ρυθμιστικών μηχανισμών, όπως η μεγάλη παραγωγή αυξητικών παραγόντων και η ελλειψη κατασταλτικών παραγόντων. Η μελέτη σε μοριακό επίπεδο των παραπάνω μηχανισμών θεωρείται ότι θα οδηγήσει σε νέες ανακαλύψεις στην θεραπευτική του καρκίνου.

Η γνώση της κυτταρικής κινητικής του άγου είναι προϋπόθεση για την κατανόηση της δράσης της χημιοθεραπείας.

Κυτταρικός κύκλος

Η χρονική περιόδος που διαρκεί από το τέλος μιας κυτταρικής διαίρεσης μέχρι το τέλος της επόμενης ονομάζεται κυτταρικός κύκλος. Ο κυτταρικός κύκλος περιλαμβάνει τη μεσοκύκλο και τη μετακύκλο.

Η μεσοκύκλο περιλαμβάνει τη φάση G1, που προηγείται της συνθέσεως του DNA, την S φάση, κατά την οποία συντίθεται DNA, και την G2 φάση που αρχίζει με το τέλος της S φάσης και διαρκεί μέχρι να αρχίσει η κυτταρική διαίρεση. Η διάρκεια των φάσεων G1, S και G2 στη θηλαστική καμίανει περίπου σε σταθερά άριστα μεταξύ 6 - 10 και 2 - 5 ωρών, αντίστοιχα. Η μετάκαλυμα διαρκεί περίπου 1 ώρα.

Αν το κύτταρο μετά τη μετάκλυμα δεν οδηγήσει στη συνθέση DNA, άλλα στην περιοχή, τότε λέγεται ότι βρίσκεται στη φάση G0. Τα κύτταρα έχουν τη δυνατότητα να μεταπέσουν από τη φάση G0 στην G1 οποιαδήποτε χρονική στιγμή, αν δεχθούν τα κατάλληλα ερευνήτριες, (Εικόνα 1-1).

Μελέτες έχουν καταδείξει διάφορους παράγοντες που ελέγχουν τη κυτταρική διαίρεση.

Διατομή σε οποιαδήποτε επίπεδο ελέγχου της κυτταρικής διαίρεσης μπορεί να οδηγηθεί στην καρκινογένεση.

Εικόνα 1-1. Ο κυτταρικός κύκλος.
Οι ακόλουθοι παράγοντες ελέγχου του κύκλου έχουν διαπιστωθεί ως σήμερα:
1. Εξωγενείς αυξητικοί (IG-CSF, GM-CSF).
2. Εξωγενείς ανασταστικοί.
3. Υποδοχές αυξητικών παραγόντων.
4. Κυκλικές.
5. Κυκλικές.
6. Ογκοκατασταλτικά γονίδια.

Τα σημεία, στα οποία λαμβάνει χώρα ο ελέγχος της κυτταρικής διάρροιας, παρουσιάζουν ποικιλομορφία, αφού εντοπίζονται σε κάθε θέση του κυτταρικού κύκλου (Εικόνα 1-2).

- Η μετάβαση από τη φάση G1 στην S μπορεί να διακοπθεί από μεταλλάξεις ογκογονιδίων, όπως είναι το p53. Το ιδίο γονίδιο μπορεί να οδηγήσει το κύτταρο σε προγραμματισμένο κυτταρικό θάνατο ή απόπτωση.
- Η αναστολή της φάσης S έχει επίσης μελετηθεί, αλλά δεν έχει κατανοηθεί επαρκώς. Το γονίδιο ATM είναι ένα από αυτά που φαίνεται να συμμετέχουν στη ρύθμιση αυτή.
- Η αναστολή του κυτταρικού κύκλου στη φάση G2 έχει μελετηθεί και η φωσφοράση cdc25 είναι το κεντρικό μέρος στη διαδικασία αυτή. Ωστόσο, τα γονίδια που συμμετέχουν στη ρύθμιση αυτή δεν έχουν διευκρινιστεί.
- Τέλος, διάφορα γονίδια έχουν βρεθεί να αναστέλλουν τη φάση της μετάφες, εφόσον ο μηχανισμός της ευθυγράμμισης των χρωματιδίων ή των μικροσωλήνων έχει υποστεί βλάβη.

Ποσοστά ραδιοημισμένων μιτώσεων και η κυτταρωμετρία ροής είναι μέθοδοι που έχουν χρησιμοποιηθεί με επιτυχία στη μελέτη της κυτταρικής κινητικής κατά την φάση S (διπλασιασμός του DNA).

Εικόνα 1-2. Σημεία ελέγχου του κυτταρικού κύκλου.

Κυτταρική κινητική

Η κινητική του ογκού μελετάται ερευνητικά με διάφορα μαθηματικά μοντέλα και μέθοδους. Μία από τις πιο χρήσιμες μεθόδους είναι η υπολογισμός του κλάδους ανάπτυξης (Growth Fraction - GF). Με τη μέθοδο αυτή μπορεί να υπολογιστεί το κλάδη των κυττάρων ενός πληθυσμού που βρίσκεται σε φάση πολλαπλασιασμού. Ο υπολογισμός γίνεται με τη μέθοδο της αυτοραδιογραφίας με Ψ-Η-Th.

Αρχικά, υπολογίζεται ο δείκτης TL (δείκτης σήμανσης με θυμιδίνη), ο οποίος εκφράζει τον λόγο των σημασμένων κυττάρων προς τον συνολικό αριθμό κυττάρων. Το κλάδη ανάπτυξης χρησιμοποιεί το TL για να υπολογίσει το συνολικό ποσοστό κυττάρων που βρίσκονται σε φάση πολλαπλασιασμού με τον τύπο:

\[
GF = TL \times \frac{T_c}{T_g} \times \lambda
\]

Στον τύπο αυτό, οι δείκτες \(T_c \) και \(T_g \) αντιπροσωπεύουν τη διάρκεια του συνολικού κυτταρικού κύκλου και της φάσης S, αντίστοιχα, και υπολογίζεται με συγκεκριμένη μέθοδο, ενώ ο δείκτης \(\lambda \) είναι η σταθερά της εξέλιξης (=1). Εκτός από το κλάδη ανάπτυξης και τη διάρκεια του κυτταρικού κύκλου, ο τρίτος παράγοντας που καθορίζει το ρυθμό ανάπτυξης ενός ογκού είναι η κυτταρική απώλεια. Η κυτταρική απώλεια συμβαίνει τόσο σε φυσιολογικά όσο και σε καρκινικά κύτταρα και καθορίζεται από το ρυθμό θανάτου ή καταστροφής-απόπτωσης των κυττάρων.

Η ανάπτυξη του ογκού φαίνεται να ακολουθεί την καμπύλη ανάπτυξης κατά Gompertz. Σύμφωνα με αυτήν, η αύξηση του πληθυσμού των καρκινικών κυττάρων ακολουθεί, αρχικά, λογαριθμική αύξηση, η οποία, στη συνέχεια, μεταβαίνει σε σταθεροποίηση του αριθμού των κυττάρων σε πλατεία. Οι μηχανισμοί που διαμορφώνουν τη μορφολογία της καμπύλης είναι οι ακόλουθοι:

α. Υποσία,
β. μειωμένη θρέψη των καρκινικών κυττάρων,
γ. συσσώρευση τοξικών μεταβολιτών, και
d. μεταλλάξεις που οδηγούν σε αυξημένη κυτταρική απόπτωση.

Κυτταρική κινητική και ανάπτυξη χημειοθεραπευτικών φαρμάκων

Η γνώση της κυτταρικής κινητικής βρίσκει τη σημαντικότερη εφαρμογή στη δράση της χημειοθεραπευτικής σχετικά με τους καρκινικούς κυττάρους. Η βασική θεωρία δράσης των κυτταροτοξικών φαρμάκων είναι η θεωρία του λογαριθμικού θανάτου, σύμφωνα με την οποία: το
χημειοθεραπευτικό φάρμακο. Θανατώνει κάθε φορά το ιδίο ποσοστό κυττάρων του άγκου, ενώ τα κύτταρα που επιβίωνουν κάθε φορά είναι ιδιαίτερα με τα αρχικά. Συνεπώς, με συγκεκριμένο αριθμό χημειοθεραπευτικών κύκλων, που εξαρτάται από τον άριθμο των κυττάρων και την ευαισθησία τους στο φάρμακο, επέμεινε θεωρητικά να θανάτωσε το συνόλο των καρκινικών κυττάρων. Στην πράξη, όμως, παρατηρείται απόκλιση από το θεωρητικό μοντέλο που προαναφέρθηκε, η οποία οφείλεται σε δύο κυρίως λόγους:

1. Το κλάσμα αναπτύξεως του άγκου ελαττώνεται με την προόδο της νόσου. Τα κύτταρα που πολλαπλασιάζονται βραδύτερα είναι λιγότερο ευαισθήτα στη χημειοθεραπεία.

2. Στα τελικά στάδια της νεολαίας παρουσιάζονται καρκινικά κύτταρα, γενετικά αλλωμένα (λόγω μεταλλάξεων), τα οποία έχουν την ικανότητα να προβάλ- λουν αντίσταση στα χημειοθεραπευτικά φάρμακα.

Τα παραπάνω θεωρητικά μοντέλα έχουν περιγραφεί εκτενώς στη σχετική βιβλιογραφία με πλήρη μαθηματική εκφράση, ωστόσο εξακολουθεί να μην υπάρχει μοντέλο, το οποίο να προβλέπει επαρκής τη συμπεριφορά του άγκου.

Συμπερασματικά, η γνώση της κινητικής των καρκινικών κυττάρων και των μηχανισμών ελέγχου της κυτταρικής διαίρεσης αποτελεί τη βασική επιστημονική γνώση, πάνω στην οποία στρίβεται η εξέλιξη των φαρμακευτικών θεραπειών για τις κακοήθεις νόσους. Ωστόσο, η έρευνα βρίσκεται σε πλήρη εξέλιξη για να αποκαλύψει άνωθες ή λιγότερο κατανοητές ακόμα προκλήσεις της συμπεριφοράς των νοσημάτων αυτών, όπως μηχανισμούς αντοχής, μηχανισμούς απορρήψης της ανοσολογικής επιτήρησης και καταφύγιος κυττάρων σε εσόδους, δυσπρόσιτους στα φάρμακα.

2. ΚΑΡΚΙΝΟΓΕΝΕΣΗ ΚΑΙ ΙΣΤΟΛΟΓΙΚΟΙ ΠΑΡΑΜΕΤΡΟΙ ΕΝΔΟΕΠΙΘΕΛΙΑΚΩΝ (IN SITU) – ΜΗ ΔΙΗΘΝΙΣΤΙΚΟΝ ΟΓΚΩΝ

Απόπτωση και νεοπλασματική εξαλλαγή

Η διατήρηση φυσιολογικού αριθμού κυττάρων σε έναν ιστό είναι το αποτέλεσμα της ισορροπίας μεταξύ κυτταρικού πολλαπλασιασμού και απόπτωσης.

Η απόπτωση είναι ένα προγραμματισμένο φυσιολογικό κύτταρο κύτταρο που συμβαίνει σε μεμονωμένα κύτταρα με ελεγχόμενο μηχανισμό, χωρίς απώλεια της ικανότητας του κύτταρου και χωρίς φλεγμόνη. Η απόπτωση συμβαίνει από πολλά γονίδια, τα οποία χωρίζονται σε δύο ομάδες:

α. Εκείνα που καταστέλλουν τον κυτταρικό θάνατο (bel-2, Bcl- XL, MCL-1), και

β. εκείνα που προώθησαν τον κυτταρικό θάνατο (bax, Bcl- Xs, Bak και Bad).

Η διμοιριώσεις των νεοπλασμάτων παράγεται ότι προκύπτει είτε από την αύξηση του κυτταρικού πολλαπλασιασμού είτε από την ελάττωση του ρυθμού απόπτωσης η τον συνδυασμό των δύο.

Η κακοήθες εξαλλαγή αφιερώνεται σε σταδιακή συσσωρεύσεις μεταλλάξεων σε ιδιόματα γονίδια, υπεύθυνα για την αύξηση και την επίβιωση του κυττάρου.

Όταν μια μετάλλαξη δεν μπορεί να επιδιορθωθεί, το κύτταρο ενεργοποιεί το μηχανισμό της αυτοκαταστροφής του, ώστε να εμποδίσει τη μετάθεση των γονιδιακών διαταραχών στα θυγατρικά κύτταρα. Όταν, όμως, η πρόγραμμα του κυτταρικού θάνατο (απόπτωση) εμφανίζει διαταραχή, τότε αρχίζει ο πολλαπλασιασμός κυττάρων με σταδιακά συσσωρεύμενες γονιδιακές ανωμαλίες που δημιουργούν κακοήθες κυτταρικούς κλώνους.

Τα νεοπλασματικά κύτταρα παρουσιάζουν ελάττωση της ικανότητας τους να ψηφίζουν απόπτωση και αντίθετα με τα φυσιολογικά, μπορούν να επεξεργάσεται τους τοπικούς ουσιωδικούς μηχανισμούς και να επιβιώνουν σε θέσεις μακρύν του οργάνου, από το οποίο προέρχονται, με αποτέλεσμα να δημιουργούν μεταστατικές εστίες.

Η απόπτωση αποτελεί μηχανισμό για τη συνεχή ελάττωση του αριθμού των κυττάρων και με τον κυτταρικό πολλαπλασιασμό, αποτελούν τις σημαντικότερες αλ-