1

1.1. Eỉ $\sigma \alpha \gamma \omega \gamma \grave{\eta}$

1.2. $\Theta \varepsilon \rho \mu ı \kappa \grave{\eta} \Delta ı \sigma \sigma \tau \partial \lambda \grave{\eta}$

1

1．1．Eỉ $\sigma \alpha \gamma \omega \gamma \grave{\eta}$

 vıкท̀ $\varepsilon v \varepsilon ́ \rho \gamma \varepsilon ા \alpha$ ．＇H $\tau \varepsilon \lambda \varepsilon \cup \tau \alpha i ́ \alpha \mu \pi о \rho \varepsilon i ̃ ~ v \alpha ̀ ~ \theta \varepsilon \omega \rho \eta \theta \varepsilon i ̃ ~ o ̈ \tau ı ~$

 $\gamma \varepsilon ו \alpha \varsigma(\lambda o ́ \gamma \omega \tau \eta ̃ \varsigma ~ \kappa ı v \eta ́ \sigma \varepsilon \omega \varsigma ~ \tau о \tilde{~} \sigma \omega ́ \mu \alpha \tau \circ \varsigma) \cdot \sigma \tau \eta ̀ v \pi \varepsilon \rho i ́-$
 λ 。

 тои̃ $20 \cup$ Tó

 $\mu \varepsilon ̀ ~ \mu i \alpha ̀ ~ \gamma \varepsilon v к \kappa o ́ \tau \varepsilon \rho \eta ~ \varepsilon ̌ к \varphi \rho \alpha \sigma \eta, \tau \omega ̃ v ~ \delta о \mu ı к \tilde{v} \nu i \theta \omega v$

 der Waals）π où $\dot{\alpha} \sigma \kappa o u ̃ v \tau \alpha ı \mu \varepsilon \tau \alpha \xi \cup ́ ~ \tau o u s . ~ ' E \pi i ́ \sigma \eta \varsigma ~ \tau \grave{\alpha}$

 $\delta \cup v \alpha ́ \mu \varepsilon \omega v \pi$ оѝ $\alpha \sigma \kappa о \tilde{v \tau \alpha ı ~} \mu \varepsilon \tau \alpha \xi \dot{\iota} \tau \tilde{\omega} v$ vouк $\lambda \varepsilon o v i ́ \omega v$
 $\lambda \alpha \ldots$ 2）．＇Evép $\gamma \varepsilon ⿺ \alpha \pi \varepsilon \rho \ldots \kappa \lambda \varepsilon i ́ o u v ~ к \alpha i ̀ ~ \sigma \omega ́ \mu \alpha \tau \alpha ~ \pi о$ о̀ $\beta \rho i ́-$

 và $\pi \alpha \rho \alpha \lambda \varepsilon i ́ \pi \varepsilon \tau \alpha \iota \sigma \tau \eta ̀ \mu \varepsilon \lambda \varepsilon ́ \tau \eta \tau \tilde{\square} v \varepsilon \dot{\varepsilon} v \varepsilon \rho \gamma \varepsilon \iota \alpha \kappa \tilde{\omega} v \mu \varepsilon \tau \alpha-$
 тои̃ бต́ $\mu \alpha \tau$ с丂．

Х $\alpha \rho \alpha \kappa \tau \eta \rho І \sigma \tau \iota к \alpha ̀ ~ \pi \alpha \rho \alpha \delta \varepsilon i ́ \gamma \mu \alpha \tau \alpha ~ \mu \varepsilon \tau \alpha \beta о \lambda \tilde{\omega} v \tau \eta ̃ ร$

 $\beta \dot{\alpha} \lambda \lambda o v$.

 $\tau \rho \varepsilon i ̃ \varsigma ~ \kappa \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon \iota \varsigma ~ \tau \eta ̃ \varsigma ~ ט ̋ \lambda \eta \varsigma, ~ \kappa \alpha \theta \dot{\omega}$ К каì $\sigma \tau \eta ̀ ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~$

 $\tau \omega v, \pi$ оѝ $\beta \rho i ́ \sigma \kappa о v \tau \alpha \iota ~ \sigma غ ̀ ~ \pi \alpha ́ \rho \alpha ~ \pi о \lambda \grave{~} \chi \alpha \mu \eta \lambda \grave{\eta} \theta \varepsilon \rho \mu о-$

 к $\alpha \alpha \sigma i ́ \alpha, \pi \alpha \rho о \cup \sigma 1 \alpha ́ \zeta o u v ~ \varepsilon ̇ v \tau о \vee o ́ \tau \varepsilon \rho \eta ~ к i ́ v \eta \sigma \eta ~ к \alpha i ̀ ~ \tau \alpha-$

 $v \alpha \sigma \tau \alpha \theta \varepsilon \rho$ ò $\sigma \eta \mu \varepsilon i ̃ o ~ \tau \alpha \lambda \alpha v \tau \omega ́ \sigma \varepsilon \omega \varsigma, \sigma \tau \alpha ̀$ ú $\gamma \rho \dot{\alpha} \gamma \cup ́ \rho \omega$ $\alpha \dot{\alpha} \pi$ ò $\mu \varepsilon \tau \alpha \beta \alpha \lambda \lambda$ ó $\mu \varepsilon v \alpha$ oquєĩ $\alpha, \dot{\varepsilon} v \tilde{\omega}$ oi δ о μ וкоі̀ $\lambda i ́ \theta$ oı

 $\kappa \rho \alpha \sigma i ́ \alpha \varsigma ~ \tau о v . ~ К \alpha ́ \theta \varepsilon ~ \sigma \tilde{\omega} \mu \alpha \pi \varepsilon \rho ı \kappa \lambda \varepsilon i ́ \varepsilon ı ~ \theta \varepsilon \rho \mu ı \kappa \eta ̀ ̀ ~ \varepsilon ̉ v \varepsilon ́ \rho-~$ $\gamma \varepsilon ı \alpha .{ }^{〔} \mathrm{H} \theta \varepsilon \rho \mu \iota \kappa \grave{\eta} \alpha \cup ̉ \tau \eta ̀ ~ \varepsilon ̇ v \varepsilon ́ \rho \gamma \varepsilon ı \alpha \alpha ̉ \nu \tau ı \sigma \tau \circ \iota \chi \varepsilon i ̃ ~ \sigma \tau \grave{\eta} \theta \varepsilon \rho-$
 นoṽ．

 $\tau \rho \eta \sigma \eta \tau \tilde{\eta} \varsigma \kappa ı \nu \eta \tau ı \kappa \tilde{\eta} \varsigma$ ह̇vย́ $\rho \gamma \varepsilon เ \alpha \varsigma(\eta ้ \tau \tilde{\eta} \varsigma \tau \alpha \chi \cup ́ \tau \eta \tau \alpha \varsigma)$
 $\theta \varepsilon \rho \mu \iota \kappa \tilde{\eta} \varsigma \tau \alpha \lambda \alpha \nu \tau \omega ் \sigma \varepsilon \omega \varsigma \tau \tilde{\omega} \nu \sigma \tau \varepsilon \rho \varepsilon \tilde{\omega} \nu \sigma \omega \mu \alpha ́ \tau \omega \nu \delta \varepsilon ̀ v$

 $\pi \rho o ̀ \varsigma ~ \tau \grave{~} \theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha ~ \dot{\varepsilon} v o ̀ \varsigma ~ \alpha ̈ \lambda \lambda o u ~ \sigma \omega ́ \mu \alpha \tau о \varsigma, ~ \grave{\eta}$ ó－ π oí α عĩval $\gamma \nu \omega \sigma \tau \eta ̀ ~ \eta ̋ ~ \mu \varepsilon ̀ ~ \tau \eta ̀ ~ \mu \varepsilon \tau \alpha \beta о \lambda \eta ̀ ~ \tau о v ̃ ~ o ̋ \gamma \kappa o v ~ \tau o v, ~$ π оѝ ỏ $\varphi \varepsilon i \lambda \lambda \varepsilon \tau \alpha \iota ~ \sigma \varepsilon ̀ ~ \mu \varepsilon \tau \alpha \beta о \lambda \grave{\eta} \tau \tilde{\eta} \varsigma \theta \varepsilon \rho \mu о \kappa \rho \alpha \sigma i ́ \alpha \varsigma ~ \tau о ט$ $\kappa \lambda \pi$ ．
$\Sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon ́ \tau \alpha ́ \pi \rho о \eta \gamma о \cup ́ \mu \varepsilon v \alpha$ $\theta \varepsilon \omega \rho \varepsilon i \tau \alpha ı$ ő $\tau \iota ~ \varepsilon ̋ v \alpha$

 $\theta \omega v .{ }^{〔} H \theta \varepsilon \rho \mu \iota \kappa \grave{\eta} \alpha \cup ̉ \tau \eta ̀ ~ \varepsilon ̇ v \varepsilon ́ \rho \gamma \varepsilon ı \alpha ~ \varepsilon i ̃ v \alpha ı ~ \alpha ̉ v \alpha ́ \lambda о \gamma \eta \tau \eta ̃ \varsigma ~ \alpha ~-~$

1．2．（－）$\varepsilon \rho \mu \iota \kappa \grave{\eta} \Delta t \alpha \sigma \tau o \lambda \grave{\eta}$

${ }^{`} \mathrm{H}^{\mu} \mu \tau \alpha \beta о \lambda \grave{\eta} \tau \tilde{\eta} \varsigma \quad \theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha \varsigma ~ \tau \tilde{\omega} \nu \delta i \alpha \varphi o ́ \rho \omega \nu$

 $\rho \varepsilon ı \alpha$ 人о́ $\mu \alpha$ каì $\mu \varepsilon \tau \alpha \tau \rho о \pi \grave{\eta} \tau \tilde{\eta} \varsigma$ Фа́ $\sigma \varepsilon \omega ́ \varsigma ~ \tau о \cup \varsigma, ~ o ̋ ~ \pi \omega \varsigma ~ \varepsilon ̌-~$
 $\lambda \alpha _2$ ）．

 $\tau \grave{\varsigma}$ ỉ $\sigma o \beta \alpha \rho \varepsilon \imath ̃ \varsigma \mu \varepsilon \tau \alpha \beta о \lambda \grave{\varepsilon} \varsigma \tau \tilde{\eta} \varsigma \kappa \alpha \tau \alpha \sigma \tau \alpha ́ \sigma \varepsilon \grave{\varrho} \varsigma \tau 0 \cup) \mu \varepsilon ̀$ $\tau \eta ̀ v \alpha 0 ̋ \xi \eta \sigma \eta \tau \tilde{\eta} \varsigma \theta \varepsilon \rho \mu о \kappa \rho \alpha \sigma$ ías тov．Eĩval عủvón τ
 $\rho \varepsilon i ̃ ~ v \grave{\alpha} \varepsilon ̇ \pi \iota \varphi \varepsilon ́ \rho \varepsilon ı \dot{\alpha} v \tau i \theta \varepsilon \tau \alpha \alpha \dot{\alpha} \pi \sigma \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha$ ．П $\alpha \rho \alpha \kappa \alpha ́ \tau \omega$

$\delta ı \alpha \sigma \tau о \lambda \tilde{\eta} \varsigma \delta \iota \alpha ́ \varphi о \rho \omega \nu \sigma \omega \mu \alpha ́ \tau \omega \nu \kappa \alpha i \delta_{\rho} \rho \iota \sigma \mu \varepsilon ́ v \alpha \sigma \chi \varepsilon \tau 1-$ $\kappa \alpha ̀ ~ \sigma \tau o t \chi \varepsilon i ̃ \alpha$ ．
${ }^{\circ} \mathrm{H} \gamma \rho \alpha \mu \mu \kappa \grave{\eta} \delta \iota \alpha \sigma \tau о \lambda \grave{\eta} \tau \tilde{\omega} v \sigma \tau \varepsilon \rho \varepsilon \tilde{\omega} v \mu \pi о \rho \varepsilon \tilde{\imath} v \alpha ̀ \mu \varepsilon-$
 $\tau \alpha ı \alpha ̉ \pi$ ò $\tau \grave{\eta} \theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha ~ \tau \eta \varsigma . ~ " E \tau \sigma ı \mu ı \alpha ̀ ~ \rho \alpha ́ \beta \delta o \varsigma, ~ \mu \eta ́-$
 $\kappa \alpha \tau \grave{\alpha} \mathrm{dl}, \mu \grave{\varepsilon} \tau \eta ̀ \mu \varepsilon \tau \alpha \beta$ о $\grave{\eta} \tau \tilde{\eta} \varsigma \theta \varepsilon \rho \mu о \kappa \rho \alpha \sigma i \alpha \varsigma \tau \eta \varsigma, \kappa \alpha-$ $\tau \grave{\alpha} \mathrm{d} \theta$ ，к $\alpha \tau \grave{\alpha} \tau \grave{\eta} \sigma \chi \varepsilon ́ \sigma \eta \mathrm{~d} 1=\beta .1 . \mathrm{d} \theta$ ，ő π ou β عival ó
 $\sigma \tau \alpha \dot{\sigma} \varepsilon \iota \varsigma \operatorname{grad}^{-1},(\delta \eta \lambda \alpha \delta \grave{\eta} \alpha \dot{\alpha} \alpha \dot{\alpha} \beta \alpha \mu$ ò $\theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha \varsigma)$ ， ő $\pi \omega \varsigma \pi$ роки́лтєı $\dot{\alpha} \pi$ ò тท̀ $\sigma \chi \varepsilon ́ \sigma \eta \quad \beta=\frac{\mathrm{d} 1}{1 \times \mathrm{d} \theta}=\frac{1}{\mathrm{~d} \theta}$

 $\xi i \zeta \varepsilon ı$ và $\sigma \eta \mu \varepsilon \iota \omega \theta \varepsilon \imath ̃$ ö ι ，ö $\pi \omega \varsigma ~ \varphi \alpha i ́ v \varepsilon \tau \alpha \iota ~ \sigma \tau o ̀ v ~ \pi i ́ v \alpha \kappa \alpha$

 $\tau о \mu \varepsilon \varsigma ~ \mu \varepsilon \tau \alpha \beta о \lambda غ ̀ \varsigma ~ \tau \tilde{\eta} \varsigma ~ \theta \varepsilon \rho \mu о к \rho \alpha \sigma i \alpha \varsigma ~ \tau о \cup \varsigma, ~ о ̈ \pi \omega \varsigma$

 $\beta \delta$ ои $\mu \eta$ коия 1 m кат $\alpha^{\circ} \mathrm{C}\left(\beta=9 \times 10^{6} \mathrm{grad}^{1}\right) \theta \grave{\alpha}$ है－ $\pi \iota \varphi \varepsilon ́ \rho \varepsilon \imath \alpha 0 ̋ \xi \eta \sigma \eta$ тои̃ $\mu \eta$ коия $\tau \eta \varsigma \kappa \alpha \tau \alpha ̀ ~ 9 \times 10^{-6} \mathrm{~m}(9$
 $\beta \delta$ ou pyrex μ ŋ́коия 1 m катд̀ $1^{\circ} \mathrm{C}\left(\beta=4 \times 10^{-6}\right.$
 $4 \times 10^{-6} \mathrm{~m}(4 \mu \mathrm{~m})$ ．

ПINAKAL 1．1．${ }^{\circ}$ O $\operatorname{\Sigma vv\tau \varepsilon \lambda \varepsilon \sigma \tau \eta ̀\varsigma ~} \Gamma \rho \alpha \mu \mu \kappa \tilde{\eta} \varsigma \Delta t \alpha \sigma \tau 0 \lambda \tilde{\eta} \varsigma^{\circ} O$－ $\rho เ \sigma \mu \varepsilon ́ v \omega v{ }^{\text {＇}}$ Y $\lambda เ \kappa \tilde{\omega} v$

＇Y入ıко̀	$\Sigma \nu v \tau \varepsilon \lambda \varepsilon \sigma \tau \eta ̀ \varsigma \Gamma \rho \alpha \mu \mu \iota \kappa \tilde{\eta} \varsigma \Delta ı \alpha-$ ото入ñร （ grad $^{-1)}$

Мо́ $\lambda \cup \beta$ ¢оя	29×10^{-6}
＇A入ovuívio	24×10^{-6}
Халко̀¢	17×10^{-6}
इídпооя	12×10^{-6}
	9×10^{-6}
＂Ya入os Pyrex	4×10^{6}
X $\alpha \lambda \alpha \zeta$ ías	Пері́лои 0

4 KINHTIKH @E Ω PIA TH Σ ©EPMOTHTA - ©EPMOKPALIA

 $\tau \tilde{\omega} v$.

 $\kappa \alpha i ̀ \theta$ ท̀ $\mu \varepsilon \tau \alpha \beta о \lambda \grave{\eta} \tau \eta ̃ \varsigma ~ \theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha \varsigma ~ \sigma \varepsilon ̀ ~ \beta \alpha \theta \mu о$ о̀ऽ $K \varepsilon \lambda \sigma i o u(\mathrm{grad})$.

 $\lambda \varepsilon ̀ \varsigma ~ \theta \varepsilon \rho \mu о к р \alpha \sigma i ́ \varepsilon \varsigma ~ o ́ ~ \sigma u v \tau \varepsilon \lambda \varepsilon \sigma \tau \eta ̀ \varsigma ~ \alpha ט ̉ \tau o ̀ \varsigma ~ \mu \varepsilon ו \omega ́ v \varepsilon \tau \alpha ı ~$ каї đغ̀ $\theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \varepsilon \varsigma ~ \pi о \grave{~} \pi \lambda \eta \sigma \iota \alpha ́ \zeta o u v ~ \tau \grave{̀} \theta \varepsilon \rho \mu о к \rho \alpha-$ бí α тои̃ $\alpha \pi$ ó $\lambda \cup \tau o u ~ \mu \eta \delta \varepsilon v o ̀ s ~ \tau \varepsilon i ́ v e ı ~ v \alpha ̀ ~ \mu \eta \delta \varepsilon v ı \sigma \theta \varepsilon i ̃ . ~$

 Hooke ($2^{\mathrm{O} \varsigma}$ Tó $\mu \mathrm{o}, 2^{\mathrm{O}} \mathrm{K} \varepsilon \varphi \alpha \dot{\alpha} \lambda \alpha 10$) $\dot{\omega} \varsigma \dot{\varepsilon} \xi \tilde{\eta} \varsigma$:
$\mathrm{dl}=\mathrm{F} / \mathrm{S} \times 1 \times 1 / \mathrm{E}=\mathrm{T} \times 1 \times 1 / \mathrm{E}, \dot{\alpha} \lambda \lambda \dot{\alpha}, \quad$ ö $\pi \omega \varsigma \dot{\alpha} v \alpha-$ $\varphi \varepsilon ́ \rho \theta \eta \kappa \varepsilon \pi \rho о \eta \gamma \circ \cup ́ \mu \varepsilon v \alpha, \mathrm{dl}=\mathrm{b} . \mathrm{ld} \theta$, ${ }^{\alpha} \rho \alpha$. $\beta .1 . \mathrm{d} \theta=$
 бтıко́тทтац тои̃ Young каì β ó $\gamma \rho \alpha \mu \mu \iota \kappa o ́ \varsigma ~ \sigma \cup \nu \tau \varepsilon \lambda \varepsilon-$ бтท́s $\delta ı \alpha \sigma \tau о \lambda \tilde{\eta} \varsigma$. "O $\pi \omega \varsigma ~ \varphi \alpha i ́ v \varepsilon \tau \alpha l ~ \alpha ̀ \pi o ̀ ~ \tau \alpha ́ ~ \pi \rho o \eta \gamma o u ́-~$
 $\mu \eta ́ к о и \varsigma ~ \tau \eta ̃ \varsigma ~ \rho \alpha ́ \beta \delta o u . ~$

 $\mu о к \rho \alpha \sigma i \alpha \varsigma ~ \tau о \cup \varsigma, ~ \sigma ט ́ \mu \varphi \omega v \alpha \mu \grave{\varepsilon}$ 亢ŋ̀ $\sigma \chi \varepsilon ́ \sigma \eta ~ d V=$

 $\sigma \kappa \varepsilon \cup \alpha \sigma \mu \varepsilon ́ v o ~ \tau o ̀ ~ \sigma \tilde{\omega} \mu \alpha$ тоѝ $\mu \varepsilon \lambda \varepsilon \tau \tilde{\alpha} \tau \alpha ı$ каі̀ $\chi \alpha \rho \alpha \kappa \tau \eta-$
 $\delta ı \alpha \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma \operatorname{grad}^{-1}$. Oi $\sigma \cup \vee \tau \varepsilon \lambda \varepsilon \sigma \tau \varepsilon ̀ \varsigma ~ к \cup \beta ı \kappa \tilde{\varsigma} \varsigma \delta \iota \alpha \sigma \tau о-$
 1.2.
 крабі́ $\mathrm{O}^{\circ} \mathrm{C}$, غ̈ $\chi \varepsilon ı$ ӧ $ү к о$ V θ бє̀ $\theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha ~ \theta^{\circ} \mathrm{C}$, $\sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon ̀ ~ \tau \grave{~} \sigma \chi \varepsilon ́ \sigma \eta \mathrm{~V}_{\theta}=\mathrm{V}_{\mathrm{o}}(1+\gamma \theta)$, ö $\pi 0 \cup \gamma$ हivaı
 $\sigma \mu \varepsilon ́ v \omega v{ }^{\text {'Y }}$ „ккळ̃v

'Yגıко̀	$\Sigma \nu \cup \tau \varepsilon \lambda \varepsilon \sigma \tau \eta ̀ \varsigma K \cup \beta ı \kappa \tilde{\eta} \varsigma \Delta ı \alpha \sigma \tau 0-$ $\lambda \tilde{\eta} \varsigma$ $\left(\right.$ grad $\left.^{-1}\right)$

 тоธ̃.
 $\mu \varepsilon \tau \alpha \beta о \lambda \grave{\eta} \tau \tilde{\varsigma} \varsigma \quad \theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha \varsigma ~ \tau о \cup \varsigma, \sigma \cup ́ \mu \varphi \omega v \alpha \mu \dot{\varepsilon} \tau \eta ̀$

 $\sigma \varepsilon ̀ ~ \theta \varepsilon \rho \mu о к \rho \alpha \sigma i ́ \alpha ~ \theta^{\circ} \mathrm{C},\left(\mathrm{V}_{\theta}\right) \pi \alpha \rho \varepsilon ́ \chi \varepsilon \tau \alpha \iota$ à π ò $\tau \grave{~} \sigma \chi \varepsilon ́ \sigma \eta$

 $\mu \varepsilon \tau \alpha \beta \dot{\alpha} \lambda \lambda \varepsilon \tau \alpha \iota \mu \varepsilon ̀ ~ \tau \grave{~} \theta \varepsilon \rho \mu о к \rho \alpha \sigma i \alpha$, ö $\pi \omega \varsigma ~ \chi \alpha \rho \alpha \kappa \tau \eta-$

 $\sigma ט ́ \mu \varphi \omega v \alpha \mu \varepsilon ̀ ~ \tau o ̀ ~ N o ́ \mu o ~ B o y l e ~-~ M a r i o t t e, ~ o ́ ~ o ̋ \gamma к о \varsigma ~ \varepsilon ́-~$ vòऽ ả́ع

$\Sigma_{\chi \tilde{\eta} \mu \alpha \text { 1.1. 'O ö } \gamma к о \varsigma ~ \pi о и ̆ ~ к \alpha \tau \alpha \lambda \alpha \mu \beta \alpha ́ v o u v ~} 1000 \mathrm{~g}$. ט̈ $\delta \alpha \tau \circ \varsigma$

 $\sigma \chi \varepsilon ́ \sigma \eta \mathrm{dV}=\alpha . \mathrm{V}_{\mathrm{t}} \mathrm{d} \theta$, ö $\pi \circ 0 \mathrm{dV}$ हĩvaı $\mathfrak{\eta} \mu \varepsilon \tau \alpha \beta \circ \lambda \grave{̀}$ тои̃

 $\varepsilon \rho i ́ \omega v \sigma \varepsilon ̀ \sigma \tau \alpha \theta \varepsilon \rho \grave{̀} \pi i ́ \varepsilon \sigma \eta$. $\Sigma \tau \grave{\eta} v \pi \alpha \rho \alpha \pi \alpha ́ v \omega \sigma \chi \varepsilon ́ \sigma \eta$

 кои тous.

$$
\alpha=\frac{1}{V_{t}} \times \frac{d v}{d \theta}
$$

 बIั̃v.

 $\tau o v ~ \sigma \varepsilon ̀ ~ \beta \alpha \theta \mu o u ̀ s ~ K \varepsilon \lambda \sigma i ́ o v . ~ ' A \pi o ̀ ~ \tau \grave{\alpha} \pi \alpha \rho \alpha \pi \alpha ́ v \omega \pi \rho o-$

1.3. Мє́трŋбף $\tau \tilde{\eta} \varsigma \Theta \varepsilon \rho \mu о к р а \sigma i ́ a \varsigma$

 $\mu \alpha \kappa \alpha \varsigma, \mu \pi о \rho \varepsilon \imath ̃ ~ v \alpha ̀ ~ \sigma \tau \eta \rho \emptyset \chi \theta \varepsilon \imath ̃ ~ \varepsilon i \tau \tau ~ \sigma \varepsilon ̇ ~ \varepsilon ̌ v \alpha ~ \sigma \tau \alpha \theta \varepsilon \rho o ̀ ~$

(α) "Eva $\sigma \tau \alpha \theta \varepsilon \rho o ̀ ~ \theta \varepsilon \rho \mu о \mu \varepsilon \tau \rho ı к ̀ ̀ ~ \sigma \eta \mu \varepsilon і ̃ o . ~ \Theta \varepsilon \omega \rho \varepsilon і ̃-~$

 $\mu о к \rho \alpha \sigma \dot{\alpha} \alpha$ тои̃ $\sigma \dot{\mu} \mu \alpha \tau \circ \varsigma$ (ö $\pi \omega \varsigma \varsigma . \chi$. $\mathfrak{\eta} \pi i \varepsilon \sigma \eta \mu \tilde{\alpha} \varsigma \mu \dot{\alpha}-$

 $\dot{\varepsilon} \xi \tilde{\eta} \varsigma \sigma \chi \varepsilon ́ \sigma \eta: \mathrm{T}_{1} / \mathrm{T}_{2}=\mathrm{X}_{1} / \mathrm{X}_{2}$. . $\tau \grave{\eta} \sigma \chi \varepsilon ́ \sigma \eta$ aủ $\tau \grave{\eta} \eta \dot{\eta} \tau \mu \eta \dot{\eta}$

 крабíaऽ лой $ŋ \tau \varepsilon і \tau \tau \alpha . ~$

 Sov $\tau \alpha \imath \sigma \tau \alpha \theta \rho \rho \dot{\varsigma} \varsigma \tau \mu \varepsilon ́ \varsigma$, ö $\pi \omega \varsigma ~ \pi . \chi .0^{\circ} \mathrm{C}$ каì $100^{\circ} \mathrm{C}$,
 $\kappa \lambda i \mu \alpha \kappa \alpha$ Fahrenheit. Tò $\delta \iota \alpha ́ \sigma \tau \eta \mu \alpha \mu \varepsilon \tau \alpha \xi \grave{v} \tau \tilde{\nu} v$ סúo
 $\kappa \lambda i ́ \mu \alpha \kappa \alpha$ К $\ell \lambda \sigma i ́ o u ~ к \alpha i ̀ ~ 180(212-32) ~ \sigma \tau \grave{\eta v ~ к \lambda i ́ \mu \alpha к \alpha ~}$ Fahrenheit.

 $\delta ı \rho ı \sigma \theta \varepsilon i ̃ ~ \varepsilon ̌ v \alpha ~ \delta \varepsilon ט ́ \tau \varepsilon \rho о ~ \sigma \tau \alpha \theta \varepsilon \rho o ̀ ~ \theta \varepsilon \rho \mu о \mu \varepsilon \tau \rho ı к o ̀ ~ \sigma \eta-~$ $\mu \varepsilon i ̃ o ~ к \alpha i ̀ ~ \mu \varepsilon \tau \alpha ̀ ~ \tau o ̀ ~ \delta ı \alpha ́ \sigma \tau \eta \mu \alpha ~ \pi o o ̀ ~ \pi \alpha \rho \varepsilon \mu \beta \alpha ́ \lambda \lambda \varepsilon \varepsilon \tau \alpha l ~ \alpha ̉ v \alpha ́-~$

 $\mu ı \tilde{\alpha} \varsigma \dot{\alpha} \tau \mu o ́ \sigma \varphi \alpha 1 \rho \alpha \varsigma), \kappa \alpha \theta \dot{\omega} \varsigma \kappa \alpha i ̀ ~ \tau o ̀ ~ \sigma \tau \alpha \theta \varepsilon \rho o ̀ ~ \sigma \eta \mu \varepsilon \tau ̃ o ~$

 $\gamma ı \alpha ̀ ~ \tau o ̀ v ~ \pi \rho о \sigma \delta ı \rho \rho ı \sigma \mu o ̀ ~ \tau \tilde{\omega} v ~ \theta \varepsilon \rho \mu о \mu \varepsilon \tau \rho ı к \tilde{\omega} v ~ к \lambda \iota \mu \alpha ́-$ $\kappa \omega v$. 'Av

