CONTROL VALVE PN16 SERIES VLE100

ESBE control valves series VLE122 and VLE132 are 2-way and 3-way external threaded valves for PN16, DN 15-50.

VI F132 External thread PN16

MEDIA

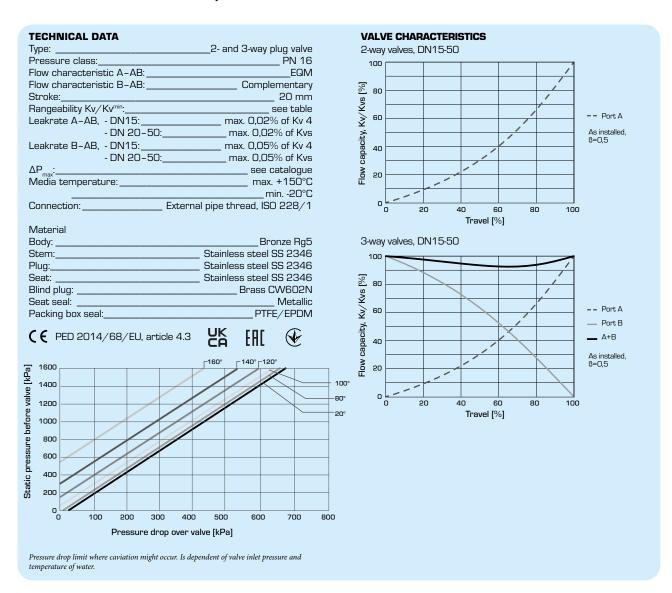
These valves can handle the following types of media:

- Hot and cold water.
- Water containing phosphate or hydrazine additives.
- Water with antifreeze additives such as glycol.

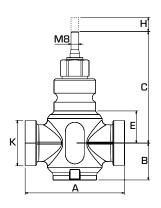
If the valve is used for media at temperatures below 0°C (32°F), it should be equipped with a stem heater in order to prevent ice formation on the valve stem.

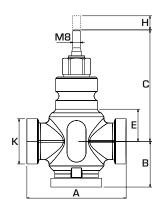
ACCESSORIES DN 15 - 50

Connection sets with Internal Thread Fittings or Soldering Fittings are available as an option.


Art. No. 26000700 _ Adaptor kit, Siemens SQX

CONTROL VALVE DESIGNED FOR


- Heating
- Comfort Cooling
- Floor heating
- Solar heating
- Ventilation District Heating District Cooling


SUITABLE ACTUATORS

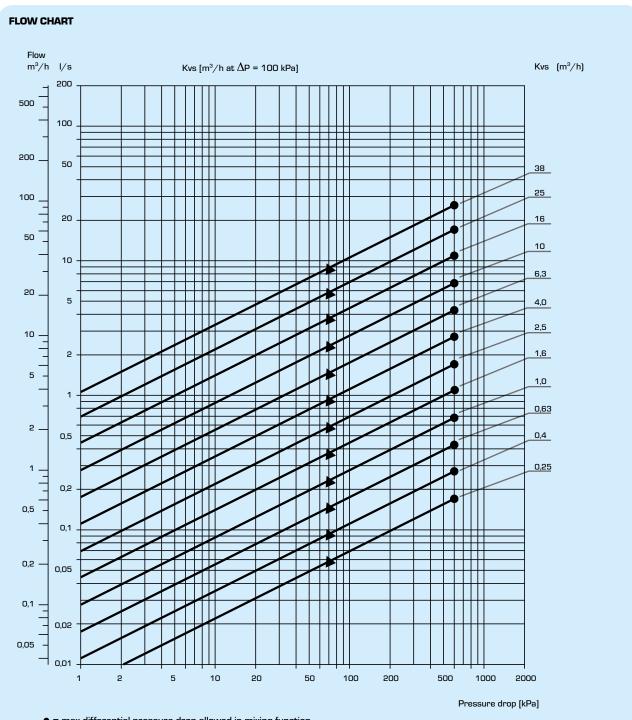
- Series ALB140
- Series ALFxx1 Series ALFxx4

CONTROL VALVE PN16SERIES VLE100

2-WAY CONTROL VALVE SERIES VLE122

Art. No.	Reference	DN	Kvs*	А	В	С	Е	н	К	Rangeability Kv/Kv ^{min}	Weight [kg]
21250100	VLE122	15	0,25	100	36	110	24	20	G 1"	>50	1,0
21250200			0,4								
21250300			0,63								
21250400			1								
21250500			1,6								
21250600			2,5								
21250700			4								
21250800	VLE122	20	6,3	100	38	116	30	20	G 11⁄4"	>100	1,2
21250900	VLE122	25	10	105	39	120	34	20	G 1½"	>100	1,4
21251000	VLE122	32	16	105	39	121	35	20	G 2"	>100	1,8
21251100	VLE122	40	25	130	48	128	42	20	G 21/4"	>100	2,6
21251200	VLE122	50	38	150	58	139	53	20	G 2¾"	>100	4,3

3-WAY CONTROL VALVE SERIES VLE132


Art. No.	Reference	DN	Kvs*	А	В	С	Е	Н	К	Rangeability Kv/Kv ^{min}	Weight [kg]
21251300	VLE132	15	1,6	100	50	110	24	20	G 1"	>50	1,1
21251400			2,5								
21251500			4								
21251600	VLE132	20	6,3	100	50	116	30	20	G 11/4"	>100	1,3
21251700	VLE132	25	10	105	52	120	34	20	G 1½"	>100	1,6
21251800	VLE132	32	16	105	52	121	35	20	G 2"	>100	2,0
21251900	VLE132	40	25	130	65	128	42	20	G 21⁄4"	>100	2,9
21252000	VLE132	50	38	150	75	139	53	20	G 2¾"	>100	4,6

^{*} Kvs-value in m³/h at a pressure drop of 1 bar.

CONTROL VALVE PN16

SERIES VLE100

- = max differential pressure drop allowed in mixing function
- ▲ = max differential pressure drop allowed in diverting function

To be considered: As both the viscosity and the thermal conduction are affected when glycol is added to the system water, this fact has to be considered when dimensioning the valve. A good rule is to choose one size higher Kv-value when 30 – 50% glycol is added. A lower concentration of glycol may be disregarded.

N.B.! Maximum 50% glycol for freezing protection and oxygen absorbing compounds are allowed as additives.

CONTROL VALVE PN16

SERIES VLE100

INSTALLATION

The valve should be mounted with flow direction in accordance with the valve marking.

If possible, the valve should be installed in the return pipe, in order to avoid exposing the actuator to high temperatures.

The valve must not be installed with the actuator mounted below the valve.

Mounting positions:

A = Allowed mounting position with fluid temperaturebetween -20°C to +120°C.

B = Allowed mounting position with fluid temperature between 0°C to +150°C.

C = Not allowed mounting position.

before the valve is installed.

To ensure that suspended solids will not become jammed

upstream of the valve, and the pipe system should be flushed

between the valve plug and seat, a filter should be installed

VALVE AUTHORITY $[\beta]$

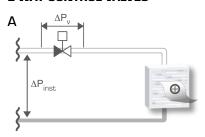
 Δp_{μ} - pressure losses over the valve [bar]

 $\Delta p_{sus}^{"}$ - pressure losses over the system with variable flow [bar]

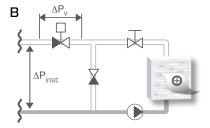
 Δp_{inst} - pressure losses over the installation [bar]

Recommendation : Valve authority [β] shall be between 0,3 to 0,7

a) 2-way valve

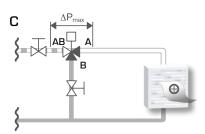

b) 3-way valve

$$\beta = \frac{\Delta p_{v}}{\Delta p_{v} + \Delta p_{inst}}$$

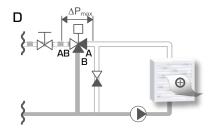

$$\beta = \frac{\Delta p_{v}}{\Delta p_{v} + \Delta p_{sys}}$$

INSTALLATION EXAMPLES

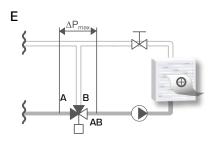
2-WAY CONTROL VALVES



Installation without local circulating pump



Installation with local circulating pump


3-WAY CONTROL VALVES

Circuit without local circulation pump

Circuit with local circulation pump

Circuit with local circulating pump

